The role of calcium and activated oxygen species as signals for controlling cross-tolerance

Chris Bowler and Robert Fluhr

Plants are confronted on a regular basis with a range of environmental stresses. These include abiotic insults caused by, for example, extreme temperatures, altered water status or nutrients, and biotic stresses generated by a plethora of plant pathogens. Many studies have shown that the cellular responses to these environmental challenges are rather similar, which might be why plants resistant to one stress are sometimes cross-tolerant to others. To understand this phenomenon and to be able to take full advantage of it in agriculture, we must determine whether the individual biochemical pathways that make up the responses to each external stimulus are activated by unique, overlapping or redundant signalling systems. We discuss the potential role of signalling molecules, such as calcium and activated oxygen species, in underlying cross-tolerance.

The existence of common defence systems to combat stress was first inferred from simple observations that plants resistant to one stress are often more resistant to others. In some cases the resistance phenotypes could even transcend the biotic–abiotic stress boundary. For example, ozone exposure can induce resistance to viral phytopathogenic Pseudomonas syringae strains in Arabidopsis1 and to tobacco mosaic virus in tobacco2 (Fig. 1): the phenomenon is defined as cross-tolerance. Cross-tolerance is extremely important for agriculture because plants can be selectively bred that are tolerant to more than one stress. Additionally, cross-tolerance allows us to compare and contrast individual responses and to examine the roles of common signal transducing molecules. Numerous studies have shown that calcium and activated oxygen species (AOS) exhibit important signalling functions in responses to both biotic and abiotic stresses, implying that they might be central components controlling cross-tolerance, at least at the cellular level. However, cross-tolerance is only possible if the whole plant is exposed to the primary signal or if systemic signals are also stimulated to ensure robust systemic resistance phenotypes.

Calcium

Increases in intracellular calcium have been noted for a range of abiotic stresses, including chilling, heat shock, anaerobic stress, salinity and drought3. Therefore, cytosolic calcium might act at a convergence point for integrating different signals. In addition, abiotic stresses commonly mobilize ascorbic acid (ABA), which is known to use calcium and calcium-dependent protein phosphatases for signal transduction. However, the increases in calcium and ABA levels generated by certain abiotic stresses are not in the same temporal range, which makes any association between the two rather tenuous. For example, ABA levels increase transiently only after 24 h of cold stress4, whereas calcium changes occur immediately5. Furthermore, ABA-independent pathways controlling abiotic stress responses have been reported6. Ethylene is another common stress hormone whose mode of action requires calcium7. It can also promote ABA formation8. Therefore, a picture emerges in which abiotic stress responses are induced by a variety of primary and secondary (or reiterative) signals that can be temporally differentiated from each other.

Intercellular calcium homeostasis is also modulated during plant defence responses to pathogens. In this case, cytosolic calcium is increased in response to race-specific elicitors (e.g. AvrRpt1 in Arabidopsis9 and Avr9 in tomato; J.D.G. Jones and M. Blatt, pers. commun.) as well as in response to some (but not all10) of the more general non-race-specific signals of pathogen attack or wounding, such as Pep3, chitin fragments, oligogalacturonides and salicylic acid10–12.

How is specificity controlled through such a ubiquitous molecule? First, there are clear differences in the calcium signals arising from each response, for example, some are fast, others are slow, some are transient, others persist, oscillate or make waves, and some can be desensitized by repetitive stimulation whereas others cannot. These differences result in diagnostic calcium signatures for each signal13.

One reason for these differences is the type of calcium channel through which calcium enters the cytoplasm. Often these channels are gated by other signalling molecules (such as calmodulin or specific nucleotides), by voltage or by stretch, and this can determine how long they are active and how long they remain responsive to subsequent stimulations. The localization of the channel is also important because it determines where the calcium is derived from. Plasma membrane channels probably transport calcium derived from the cell wall, such as that dissociated from pectins. Internal channels can be localized on vacuolar, endoplasmic reticulum, nuclear, mitochondrial and plastid membranes, some of which might act as stores of internal calcium. Depletion and refilling of each of these stores will occur at different rates, which will also contribute to the desensitization and resensitization characteristics of each response.

Calcium homeostasis is maintained principally by the action of extension proteins, such as calcium ATPases and calcium antiporers14,15. Because calcium is toxic for most eukaryotic cells, resting concentrations remain in the nanomolar (50–100 μM) range. The cytosol is strongly buffered against high concentrations of calcium by a numerous range of calcium-binding proteins, such as calmodulin and calmodulin-binding proteins. A free molecule of calcium has been estimated to have a half-life of...
phosphorylation. In response to specific signals such as calcium and protein or to the cytoskeleton that allow association and dissociation in close proximity to each other, bound to scaffolding molecules. For this reason, signalling molecules have often been found within the cytoplasm and by their controlled release of calcium.

Fielevity can be achieved by the spatial localization of molecules (H2O2) and hydroxyl radicals (OH-), is a common phenomenon in aerobic organisms, the problem of AOS-generating systems based on plasma membrane oxidase assembly and activation is the same, it would be difficult to distinguish the AOS signalling roles from the secondary effects caused by cytotoxicity. For example, because much evidence has implicated AOS in hypersensitive cell death, it had been assumed that H2O2 is the cytoxic agent. However, recent results using the cryptogein elicitor from tobacco implicate a 9-oxylipin pathway involving the lipoygenase-dependent peroxidation of fatty acids as the major cause of cell death and suggest that H2O2 might act as a signalling molecule for the induction of the response.

Furthermore, in spite of the commonalities in plant defence responses to pathogens, not all elicitors of defence responses act in the same way. For example, oligogalacturonides use phospholipase C- but not phospholipase A-activated pathways, whereas an elicitor from Verticillium dahliae appears to operate via the opposite system. Therefore, even though the net result of plasma membrane oxidase assembly and activation is the same, it would appear that distinct signal transduction pathways are used in each specific case.

Although the source of AOS in the hypersensitive response is normally assumed to be the NADPH oxidase, this might not always be the case. The interaction of Xanthomonas with cotton has provided some interesting insights. In this case, although both peroxidase and NADPH oxidase are present, only the peroxidase system appears to generate AOS (Ref. 26). Therefore, precise differences might exist for specific plant-pathogen interactions and also between plant species. Just as compartmentalization is important for regulating calcium-dependent responses, the effects of AOS are also dependent upon their site of generation. This can be extracellular.
Cytoplasmic, organellar or nuclear AOS localization is particularly important because cytosolic molecules such as O$_2^-$ and OH$^-$ cannot cross membranes whereas H$_2$O$_2$ can. For example, phytoalexin biosynthesis in parsley (Petroselinum crispum) can be induced only by apoplastic O$_2^-$ production, heat shock proteins can be induced by H$_2$O$_2$ but not by O$_2^-$ in tomato, and tomato extensins can be induced by both H$_2$O$_2$ and O$_2^-$ (Ref. 30). Chloroplast or mitochondrial O$_2^-$ production might also have different consequences, particularly concerning the promotion of cell death via apoptotic-like mechanisms. In animal cells, increased oxidative stress in the mitochondria can lead to apoptosis. But although the regulatory mechanism in animal cells has been elucidated in detail it is largely unknown in plants, therefore it should not be assumed that programmed cell death occurs in the same way in both plants and animals.

AOS formation leads to alterations in intracellular redox homeostasis, a consequence of which is the activation of specific signalling pathways. To date, the membrane diffusible and comparatively stable molecule H$_2$O$_2$ is the most likely candidate for this intracellular signalling role. The addition of H$_2$O$_2$ or its experimental generation in catalase-antisense plants after light treatment can cause the induction of several defence-related genes (Fig. 2). The use of plants with reduced H$_2$O$_2$-detoxifying capabilities exemplifies the potential role of this molecule as a signal. Indeed, enzymes that scavenge H$_2$O$_2$ are down regulated during pathogenesis. Conversely, H$_2$O$_2$ is a potent activator of certain MAP kinase cascades such as those involving wound-induced protein kinase (WIPK) which, are components of pathogen defence signalling. Perhaps working upstream of the NADPH oxidase-derived oxidative burst.

The role of H$_2$O$_2$ as an intracellular signal in animal cells is well known. For example, it activates the NF-κB transcription factor, which mediates inflammatory, immune and acute phase responses to diverse stress stimuli. Several plant disease resistance genes share some homology with molecules involved in NF-κB-mediated responses, indicating that similarities exist between animal and plant stress signalling systems. A range of other transcription factors that are responsive to oxidative stress, such as SoxROS, OxyR and API (Ref. 36), has been described in other non-plant systems.

Pathogen defence in plants also involves the production of nitric oxide (NO) which, when combined with O$_2^-$, can generate highly toxic molecules such as peroxynitrite radicals. Although peroxynitrite is an important intermediate in the phagocytic oxidative burst in animals, this does not appear to be the case in plants. Instead, NO appears to act in conjunction with H$_2$O$_2$, rather than O$_2^-$ (Ref. 38). Nitric oxide has been proposed to activate responses via specific signalling pathways involving G proteins, cGMP and calcium (G. Neuhaus, pers. commun.). The overlap among these pathways and the better-studied calcium-MAP kinase-NADPH oxidase pathways remains to be elucidated. A further complication is that, as with other reactive oxygen species, NO can have opposite effects depending on the applied exogenous doses and the degree of insult that the plant is suffering. Because no reliable data on endogenous NO concentrations are available, the elucidation of the physiological role of this gas is only just emerging. In addition, because NO is a free radical with high levels of reactivity towards other AOS, knowing the relative concentrations of each activated oxygen or nitrogen species will be of tremendous importance in understanding the basis of NO function and the plant’s response to it.

A further possibility is that AOS signalling in abiotic and biotic stresses is mediated by thiol-disulphide exchange reactions involving glutathione. Depletion of glutathione (a potent inducer of defence genes) in Arabidopsis cell cultures renders them susceptible to oxidative damage. Furthermore, in bacteria, glutathione acts as a sink for NO by generating nitroglutathione which can activate the OxyR transcription factor. Although the generation of GSNO has not yet been established in plants, it is an interesting possibility for linking redox control with cellular signalling.
Crosstalk between calcium and AOS
Changes in intracellular redox and calcium homeostasis are unifying consequences of biotic and abiotic stress. Furthermore, an oxidative stress per se, such as the administration of H₂O₂, can stimulate increases in cytosolic calcium⁴⁵, and when calcium signalling is blocked, elicitation of the oxidative burst by oligoglucan-turonides is prevented⁵⁰. However, this is not the case for all elicitors, for example, the proteinaceous elicitor harpin does not appear to use calcium signals to stimulate the oxidative burst in tobacco cells⁴⁶. Therefore, although overall responses might be conserved, there appear to be distinct differences between the regulatory systems in operation in each case; in some cases calcium is upstream of AOS production, in other cases it is downstream, and most commonly it is concomitantly involved.

Communication between calcium and AOS production is mediated, at least in some cases, by calmodulin⁴⁷. This has been proposed to occur through a calmodulin-dependent NAD kinase that supplies NADPH during assembly and activation of the oxidative burst oxidase. Consistent with the proposed role of AOS in the supply of NADPH during assembly and activation of the oxidative burst oxidase. Consistent with the proposed role of AOS in the generation of H₂O₂ results in the generation of micro-HRs at a distance. H₂O₂ has been proposed to be the systemic signal and the superoxide dismutase (an O₂⁻ scavenger). These results give some clues as to the identity of the systemic signal(s) for disease resistance and for acclimation to abiotic stress. The same molecules involved in both cases? The induction of a systemic signal by an abiotic stress (high light irradiation) that modulates pathogen defence responses in catalase-compromised plants⁴⁷ might suggest that this is the case. Is H₂O₂, the systemic signal? Although H₂O₂ can be propagated over several cell lengths⁴⁸, there is no real evidence for longer-range propagation. An alternative candidate for a systemic signal is glutathione, which is readily modulated by AOS such as H₂O₂, which can cross biological membranes and which can diffuse or be transported long distances⁴⁹. In this regard, it might be relevant that the PR-1 protein induced systemically in catalase-antisense plants is a glutathione S-transferase⁵⁰.

The relationship between glutathione and the more conventional systemic signals, jasmonic acid and salicylic acid, should therefore be investigated with some urgency, and future models must incorporate key protein components such as NIM1/NPR1 and its interacting partners⁵¹.

A unifying view of signalling in response to stress
It is clear that both calcium and AOS are important modulators of the cellular signal transduction events following biotic and abiotic stress insults, although the long-distance signalling capabilities of some AOS implicate that they, or derived molecules, are more important for the induction of cross-tolerance. The similarities among the plant stress responses are also striking. For example, cDNA-AFLP differential display has revealed that the majority of genes induced by the race-specific Cf9–Avr9 interaction in tobacco are also induced by wounding (J.D.G. Jones, pers. commun.), and many systemic responses to pathogens also occur at localized infection sites. On the one hand, such results might reflect the experimental difficulty of differentiating between primary and secondary responses (i.e. as a result of one stress and concurrent damage, further multiple stresses and ensuing damage will occur). On the other hand, they might infer a certain level of informational and/or functional redundancy (i.e. although responses are complex, they are flexible and unstable). Furthermore, the observed differences in the level and timing of the transcriptional readouts might suggest that plant acclimation to different stresses is controlled by sophisticated quantitative rather than qualitative effects. Plants are clearly highly tuned to the absolute levels of AOS, because small concentration changes can result in drastically different responses. The similarities among intermediate signalling molecules used by diverse stresses imply that the systemic response is more modular than linear pathways⁵². If a limited number of signalling intermediates can interact in a combinatorial fashion, such networks could allow specific cellular responses to numerous,
potentially conflicting signals. Some of the constituents of MAP kinase cascades are activated by cold, drought, salinity, H$_2$O$_2$, heat, shaking, wounding, pathogen elicitors, ABA, salicylic acid and ethylene, suggesting that they might function as promiscuous networking molecules. How biological specificity can be generated in a major problem that should be addressed. The availability of a range of experimental systems and technologies promises to resolve our current ignorance into coherent models of how this might function.

Acknowledgements
Our work is part of the ‘Calcium and Activated Oxygens as Signals for Stress Tolerance’ project funded by the European Community (Grant D.E.179/97). (see http://www.cac2.org). We thank our colleagues within this project for useful suggestions, as well as members from their laboratories, in particular Frank Van Breusegem, Marta Rodriguez and Jean-Luc Montillet. We are also grateful to the anonymous reviewers for their constructive comments, and apologize to colleagues for not being able to cite all relevant articles because of size restrictions.

References
4 Lang, V. et al. (1994) Alterations in water status, endogenous ascorbic acid content, and expression of cell wall genes during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 104, 1341–1349
12 Kawano, T. et al. (1996) Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension cultures: the earliest events in salicylic acid signal transduction. Plant Cell Physiol. 37, 721–730
14 Hirai, K.H., et al. (1997) Calcium ion influx and Ca$^{2+}$ signals in wild-type and transgenic Arabidopsis plants. Plant Physiol. 113, 875–885
15 Huang, J. et al. (1997) Distinction between endoplasmic reticulum-type and plasma membrane-type Ca$^{2+}$ pumps. Plant Physiol. 113, 335–348
23 Malan, C. et al. (1996) Correlation between Ca$^{2+}$ superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbred. Planta 169, 157–166
24 Rusermuc, C. et al. (1999) Involvement of hyperosmotic-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by empyric on tobacco leaves. J. Biol. Chem. 17, 3646–3655
29 Banet, N. et al. (1998) Accumulation of small heat shock proteins, including mitohondrial HIP1, induced by oxidative stress and adaptive response in tomato plants. J. Cell Sci. 15, 519–527
33 Muller, R. et al. (1999) Transgenic tobacco plants with reduced capability to deeply reactive oxygen intermediates are hyperresistant to pathogen infection. Proc. Natl. Acad. Sci. U. S. A. 96, 14405–14410
Colinearity and gene density in grass genomes
Beat Keller and Catherine Feuillet

Grasses are the single most important plant family in agriculture. In the past years, comparative genomic mapping has revealed conserved gene order (colinearity) among many grass species. Recently, the first studies at gene level have demonstrated that microcolinearity of species. If gene organization and order are conserved between species, a smaller reference genome can be used as a model for gene isolation from large genomes. In spite of these problems, rice remains the model plant for grasses as there is limited useful colinearity between Arabidopsis and grasses. However, studies in rice have to be complemented by more intensive genetic work on grass species with large genomes (maize, Triticeae). Gene-rich chromosomal regions in species with large genomes, such as wheat, have a high gene density and are ideal targets for partial genome sequencing.

The botanical family of the grasses (Poaceae) comprises >10,000 species. Their reproductive mechanism, plant anatomy and genetic variability results in a high level of adaptability enabling grass species to grow in most terrestrial habitats. In the past few thousand years, humans have taken advantage of these natural resources by domesticating and breeding a small subset of the grass species. These efforts have resulted in many important crop plants, such as wheat, rice, maize and sorghum. Many species, including wheat, are grown in different climate zones and environmental conditions, demonstrating the diversity in the gene pool of a single species. Wheat and rice each contribute ~20% of the calories ingested by the world’s population (FAOSTAT home page; http://apps.fao.org). In total, ~60% of the world’s food production is obtained from grasses, which makes them economically by far the most important plant family.

In terms of genome organization, grasses represent a highly diverse family. Their chromosome number varies from 2n = 4 for the two species Zea mays and Oryza sativa to 2n = 266 for the polyploid grass Poa angustifolia. Their genome sizes also vary greatly; for example, the genomes of the two crop species, rice (4.3 × 109 bp) and bread wheat (1.7 × 109 bp), differ by a factor of 40 (Ref. 3). Comparative genetics enables us to analyse the genome structure in these different species. If gene organization and order are conserved between species, a smaller reference genome can be used as a model for gene isolation from large genomes. In addition, comparative genetics provides the basis for understanding genome evolution.